Abstract
Recently, small-scale Quantum Key Distribution (QKD) networks have been demonstrated and continuously operated in field environment. However, nodes of these QKD networks are less than 10 nodes. When the scale and structure of these networks becomes large and complex, such networks will subject to problem of intractable routing selection and limited transmission distance. We present a novel quantum network model and the corresponding protocol to solve these problems. The proposed quantum network model integrates classical communication network with quantum key distribution layer. Nodes in this quantum network model are divided into communication nodes for classical communication and quantum nodes for quantum key distribution. We use atomic ensembles to create entangled photons inside quantum nodes. Quantum repeaters are used to establish entanglement between remote quantum nodes so the maximum distribution distance of entangled photons can be extended. The main idea is to establish an appropriate key distribution path in the quantum key distribution layer based on the routing information obtained by the upper classical communication network. After the entanglement has been established between remote quantum nodes, these nodes will use the Ekert91 or BBM92 protocol to generate secret keys shared between each other. Then, these keys can be used to ensure the security of communication in the classical communication network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.