Abstract

During the last 20 years, the advance of communication technologies has generated multiple exciting applications. However, classical cryptography, commonly adopted to secure current communication systems, can be jeopardised by the advent of quantum computers. Quantum key distribution (QKD) is a promising technology aiming to solve such a security problem. Unfortunately, current implementations of QKD systems show relatively low key rates, demand low channel noise and use ad hoc devices. In this work, we picture how to overcome the rate limitation by using a 37-core fibre to generate 2.86 Mbit s−1 per core that can be space multiplexed into the highest secret key rate of 105.7 Mbit s−1 to date. We also demonstrate, with off-the-shelf equipment, the robustness of the system by co-propagating a classical signal at 370 Gbit s{}^{-1}, paving the way for a shared quantum and classical communication network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.