Abstract

One of the fastest growing areas of interest in quantum computing is its use within machine learning methods, in particular through the application of quantum kernels. Despite this large interest, there exist very few proposals for relevant physical platforms to evaluate quantum kernels. In this article, we propose and simulate a protocol capable of evaluating quantum kernels using Hong–Ou–Mandel interference, an experimental technique that is widely accessible to optics researchers. Our proposal utilises the orthogonal temporal modes of a single photon, allowing one to encode multi-dimensional feature vectors. As a result, interfering two photons and using the detected coincidence counts, we can perform a direct measurement and binary classification. This physical platform confers an exponential quantum advantage also described theoretically in other works. We present a complete description of this method and perform a numerical experiment to demonstrate a sample application for binary classification of classical data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.