Abstract

Abstract Strong charge-photon coupling allows the coherent coupling of a charge qubit, realized by a single charge carrier (either an electron or a hole) in a double quantum dot, to photons of a microwave resonator. Here, we theoretically demonstrate that, in the dispersive regime, the photons can mediate both an i SWAP gate as well as a i SWAP gate between two distant charge qubits. We provide a thorough discussion of the impact of the dominant noise sources, resonator damping and charge qubit dephasing on the average gate fidelity. Assuming a state-of-the art resonator decay rate and charge qubit dephasing rate, the predicted average gate fidelities are below 90%. However, a decrease of the charge qubit dephasing rate by one order of magnitude is conjectured to result in gate fidelities surpassing 95%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.