Abstract

Plasmons are usually described in terms of macroscopic quantities such as electric fields and currents. However, as fundamental excitations of metals, they are also quantum objects with internal structure. We demonstrate that this can induce an intrinsic dipole moment which is tied to the quantum geometry of the Hilbert space of plasmon states. This quantum geometric dipole offers a unique handle for manipulation of plasmon dynamics via density modulations and electric fields. As a concrete example, we demonstrate that scattering of plasmons with a nonvanishing quantum geometric dipole from impurities is nonreciprocal, skewing in different directions in a valley-dependent fashion. This internal structure can be used to control plasmon trajectories in two dimensional materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.