Abstract

During the ionization of atoms irradiated by linearly polarized intense laser fields, we find for the first time that the transverse momentum distribution of photoelectrons can be well fitted by a squared zeroth-order Bessel function because of the quantum interference effect of glory rescattering. The characteristic of the Bessel function is determined by the common angular momentum of a number of semiclassical paths termed as glory trajectories, which are launched with different nonzero initial transverse momenta distributed on a specific circle in the momentum plane and finally deflected to the same asymptotic momentum, which is along the polarization direction, through post-tunneling rescattering. Glory rescattering theory based on the semiclassical path-integral formalism is developed to address this effect quantitatively. Our theory can resolve the long-standing discrepancies between existing theories and experiments on the fringe location, predict the sudden transition of the fringe structure in holographic patterns, and shed light on the quantum interference aspects of low-energy structures in strong-field atomic ionization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.