Abstract

We investigate the effect of quantum interference between the two transition pathways from the excited doublet to the ground level of a driven V atom on the spectral features of the resonance fluorescence emission. The ultranarrow spectral line at line center, which arises due to quantum interference, occurs over a wide range of parameters. The smaller the ratio of the excited doublet splitting to the effective Rabi frequency, the more pronounced the spectral line narrowing. However, the fluorescence emission is completely quenched when the atomic dipole moments are exactly parallel and the driving field is tuned to the average frequency of the atomic transitions. The narrow line is due to the slow decay rate of one dressed state, while the quenching arises from dressed-state trapping. A finite laser linewidth destroys the spectral narrowing features and the fluorescence quenching.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.