Abstract
Fano resonance which describes a quantum interference between continuum and discrete states, provides a unique method for studying strongly interacting physics. Here, we report a Fano resonance between dark excitons and zone-edged acoustic phonons in few-layer WS2 by using the resonant Raman technique. The discrete phonons with large momentum at the M-point of the Brillouin zone and the continuum dark exciton states related to the optically forbidden transition at K and Q valleys are coupled by the exciton-phonon interactions. We observe rich Fano resonance behaviors across layers and modes defined by an asymmetry-parameter q: including constructive interference with two mirrored asymmetry Fano peaks (weak coupling, q > 1 and q < − 1), and destructive interference with Fano dip (strong coupling, ∣q∣ < < 1). Our results provide new insight into the exciton-phonon quantum interference in two-dimensional semiconductors, where such interferences play a key role in their transport, optical, and thermodynamic properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.