Abstract

We characterize the effect of quantum interference on the line shapes and measured line positions in atomic spectra. These effects, which occur when the excited-state splittings are of order of the natural line widths, represent an overlooked but significant systematic effect. We show that excited-state interference gives rise to non-Lorentzian line shapes that depend on excitation polarization, and we present expressions for the corrected line shapes. We present spectra of ${}^{6,7}$Li $D$ lines taken at multiple excitation laser polarizations and show that failure to account for interference changes the inferred line strengths and shifts the line centers by as much as 1 MHz. Using the correct line shape, we determine absolute optical transition frequencies with an uncertainty of $\ensuremath{\le}$25 kHz and provide an improved determination of the difference in mean-square nuclear charge radii between ${}^{6}$Li and ${}^{7}$Li. This analysis should be important for a number of high-resolution spectral measurements that include partially resolvable atomic lines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.