Abstract
In this paper, two meta-heuristics techniques have been employed to introduce two new quantum inspired meta-heuristic methods, namely quantum inspired genetic algorithm and quantum inspired particle swarm optimization for bi-level thresholding. The proposed methods use Otsu's method, Ramesh's method, Li's method, Shanbag's method and also correlation coefficient as evaluation functions to determine optimal threshold values of gray-level images. They exploit the trivial concepts of quantum computing such as qubits and superposition of states. These properties help to exhibit the feature of parallelism that in turn utilizes the time discreteness of quantum mechanical systems. The proposed methods have been compared with their classical counterparts and later with the quantum evolutionary algorithm (QEA) proposed by Han et al. to evaluate the performance among all participating algorithms for three test images. The optimal threshold value with the corresponding fitness value, standard deviation of fitness and finally the computational time of each method for each test image have been reported. The results prove that the proposed methods are time efficient while compared to their conventional counterparts. Another comparative study of the proposed methods with the quantum evolutionary algorithm (QEA) proposed by Han et al. also reveals the weaknesses of the latter.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have