Abstract

The ultimate regularity of quantum mechanics creates a tension with the assumption of classical chaos used in many of our pictures of chemical reaction dynamics. Out-of-time-order correlators (OTOCs) provide a quantum analog to the Lyapunov exponents that characterize classical chaotic motion. Maldacena, Shenker, and Stanford have suggested a fundamental quantum bound for the rate of information scrambling, which resembles a limit suggested by Herzfeld for chemical reaction rates. Here, we use OTOCs to study model reactions based on a double-well reaction coordinate coupled to anharmonic oscillators or to a continuum oscillator bath. Upon cooling, as one enters the tunneling regime where the reaction rate does not strongly depend on temperature, the quantum Lyapunov exponent can approach the scrambling bound and the effective reaction rate obtained from a population correlation function can approach the Herzfeld limit on reaction rates: Tunneling increases scrambling by expanding the state space available to the system. The coupling of a dissipative continuum bath to the reaction coordinate reduces the scrambling rate obtained from the early-time OTOC, thus making the scrambling bound harder to reach, in the same way that friction is known to lower the temperature at which thermally activated barrier crossing goes over to the low-temperature activationless tunneling regime. Thus, chemical reactions entering the tunneling regime can be information scramblers as powerful as the black holes to which the quantum Lyapunov exponent bound has usually been applied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.