Abstract

We show how the quantum Zeno effect can be exploited to control quantum many-body dynamics for quantum information and computation purposes. In particular, we consider a one dimensional array of three level systems interacting via a nearest-neighbour interaction. By encoding the qubit on two levels and using simple projective frequent measurements yielding the quantum Zeno effect, we demonstrate how to implement a well defined quantum register, quantum state transfer on demand, universal two-qubit gates and two-qubit parity measurements. Thus, we argue that the main ingredients for universal quantum computation can be achieved in a spin chain with an {\em always-on} and {\em constant} many-body Hamiltonian. We also show some possible modifications of the initially assumed dynamics in order to create maximally entangled qubit pairs and single qubit gates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call