Abstract
Magnetic topological insulator, where spontaneous magnetization is introduced by magnetic doping, realizes quantum anomalous Hall effect (QAHE). The chiral edge state (CES) at the edge of QAHE is a promising candidate for a dissipationless electronic channel under zero magnetic field. The realization temperature of QAHE was, however, extremely low below one hundred mK. To overcome this limitation, we fabricated a magnetic modulation-doped topological insulator and realized QHE and QAHE above 2 K. We utilized the high-temperature QAHE to prove and manipulate CES at the magnetic domain wall employing magnetic force microscope.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.