Abstract
Highly dendritic graphene crystals up to 0.25 mm in diameter are synthesized by low pressure chemical vapor deposition inside a copper enclosure. With their six-fold symmetry and fractal-like shape, the crystals resemble snowflakes. The evolution of the dendritic growth features is investigated for different growth conditions, and surface diffusion is found to be the growth-limiting step responsible for the formation of dendrites. The electronic properties of the dendritic crystals are examined down to sub-Kelvin temperatures, showing a mobility of up to 6300 cm2 V−1 s−1 and quantum Hall oscillations are observed above 4 T. These results demonstrate the high quality of the transport properties despite their rough dendritic edges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.