Abstract
A generalization of the matrix model idea to quantum gravity in three and higher dimensions is known as group field theory (GFT). In this paper we study generalized GFT models that can be used to describe 3D quantum gravity coupled to point particles. The generalization considered is that of replacing the group leading to pure quantum gravity by the twisted product of the group with its dual—the so-called Drinfeld double of the group. The Drinfeld double is a quantum group in that it is an algebra that is both non-commutative and non-cocommutative, and special care is needed to define group field theory for it. We show how this is done, and study the resulting GFT models. Of special interest is a new topological model that is the ‘Ponzano–Regge’ model for the Drinfeld double. However, as we show, this model does not describe point particles. Motivated by the GFT considerations, we consider a more general class of models that are defined not using GFT, but the so-called chain mail techniques. A general model of this class does not produce 3-manifold invariants, but has an interpretation in terms of point particle Feynman diagrams.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.