Abstract
AbstractThis chapter is the first chapter of the book dedicated to the study of the combinatorics of various quantum gravity approaches. After a brief introductory section to quantum gravity, we shortly mention the main candidates for a quantum theory of gravity: string theory, loop quantum gravity, and group field theory (GFT), causal dynamical triangulations, matrix models. The next sections introduce some GFT models such as the Boulatov model, the colourable and the multi-orientable model. The saddle point method for some specific GFT Feynman integrals is presented in the fifth section. Finally, some algebraic combinatorics results are presented: definition of an appropriate Conne–Kreimer Hopf algebra describing the combinatorics of the renormalization of a certain tensor GFT model (the so-called Ben Geloun–Rivasseau model) and the use of its Hochschild cohomology for the study of the combinatorial Dyson–Schwinger equation of this specific model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.