Abstract

One of the most famous problems in mathematics is the Riemann hypothesis: that the nontrivial zeros of the Riemann zeta function lie on a line in the complex plane. One way to prove the hypothesis would be to identify the zeros as eigenvalues of a Hermitian operator, many of whose properties can be derived through the analogy to quantum chaos. Using this, we construct a set of quantum graphs that have the same oscillating part of the density of states as the Riemann zeros, offering an explanation of the overall minus sign. The smooth part is completely different, and hence also the spectrum, but the graphs pick out the low-lying zeros.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.