Abstract
AbstractThis paper investigates the application of the quantum genetic algorithm (QGA) for Hybrid flow shop problems (HFSP) with the objective to minimize the total completion time. Since HFSP has shown to be NP-hard in a strong sense when the objective is to minimize the makespan in case of two stages, an efficient QGA is proposed to solve the problem. A real number representation is used to convert the Q-bit representation to job permutation for evaluating the solutions and quantum rotation gate is employed to update the population. Two different types of crossover and mutation operators are investigated to enhance the performance of QGA. The experimental results indicate that QGA is capable of producing better solutions in comparison with conventional genetic algorithm (GA) and quantum algorithm (QA).KeywordsHybrid flow shop schedulingGenetic algorithmQuantum algorithmtotal completion time
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have