Abstract

We propose a geometric phase gate in a decoherence-free subspace with trapped ions. The quantum information is encoded in the Zeeman sublevels of the ground state and two physical qubits to make up one logical qubit with ultra-long coherence time. Single- and two-qubit operations together with the transport and splitting of linear ion crystals allow for a robust and decoherence-free scalable quantum processor. For the ease of the phase gate realization we employ one Raman laser field on four ions simultaneously, i.e. no tight focus for addressing. The decoherence-free subspace is left neither during gate operations nor during the transport of quantum information.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call