Abstract

A critical step in experimental quantum information processing (QIP) is to implement control of quantum systems protected against decoherence via informational encodings, such as quantum error correcting codes, noiseless subsystems and decoherence free subspaces. These encodings lead to the promise of fault tolerant QIP, but they come at the expense of resource overheads. Part of the challenge in studying control over multiple logical qubits, is that QIP test-beds have not had sufficient resources to analyze encodings beyond the simplest ones. The most relevant resources are the number of available qubits and the cost to initialize and control them. Here we demonstrate an encoding of logical information that permits the control over multiple logical qubits without full initialization, an issue that is particularly challenging in liquid state NMR. The method of subsystem pseudo-pure state will allow the study of decoherence control schemes on up to 6 logical qubits using liquid state NMR implementations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.