Abstract

The quantum fluctuation effects in the time-of-flight (TOF) experiment for a condensate released from an optical-lattice potential is studied within the truncated Wigner approximation. By investigating both the spatial and momentum density distributions, we find that the condensate fraction decreases monotonically in time and hence cannot be measured in the standard TOF image. We then propose a semiquantitative analysis for such dynamical quantum-depletion process. Our study shows a universal algebraic decay of the true condensate fraction, and has a very good agreement with numerical results. We also discuss possible methods to determine the condensate fraction inside the optical lattice, and its implication to the TOF experiments in higher dimensional systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call