Abstract

We present a fully comprehensive multi-mode quantum treatment based on the truncated Wigner approximation (TWA) to study many-body effects and effects of quantum fluctuations on the formation of a discrete time crystal (DTC) in a Bose–Einstein condensate (BEC) bouncing resonantly on a periodically driven atom mirror. Zero-range contact interactions between the bosonic atoms are assumed. Our theoretical approach avoids the restrictions both of mean-field theory, where all bosons are assumed to remain in a single mode, and of time-dependent Bogoliubov theory, which assumes boson depletion from the condensate mode is small. We show that the mean-field and time-dependent Bogoliubov approaches can be derived as approximations to the TWA treatment. Differing initial conditions, such as a finite temperature BEC, can also be treated. For realistic initial conditions corresponding to a harmonic trap condensate mode function, our TWA calculations performed for period-doubling agree broadly with recent mean-field calculations for times out to at least 2000 mirror oscillations, except at interaction strengths very close to the threshold value for DTC formation where the position probability density differs significantly from that determined from mean-field theory. For typical attractive interaction strengths above the threshold value for DTC formation and for the chosen trap and driving parameters, the TWA calculations indicate a quantum depletion due to quantum many-body fluctuations of less than about two atoms out of a total of 600 atoms at times corresponding to 2000 mirror oscillations, in agreement with time-dependent Bogoliubov theory calculations. On the other hand, for interaction strengths very close to the threshold value for DTC formation, the TWA calculations predict a large quantum depletion—as high as about 260 atoms out of 600. We also show that the mean energy per particle of the DTC does not increase significantly for times out to at least 2000 mirror oscillations and typically oscillates around an average value close to its initial value; so TWA theory predicts the absence of thermalisation. Finally, we find that the dynamical behaviour of our system is largely independent of whether the boson–boson interaction is attractive or repulsive, and that it is possible to create a stable DTC based on repulsive interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.