Abstract

In time-reversal invariant systems, all charge Hall effects predicted so far are extrinsic effects due to the dependence on the relaxation time. We explore intrinsic Hall signatures by studying the quantum noise spectrum of the Hall current in time-reversal invariant systems, and discover intrinsic thermal Hall noises in both linear and nonlinear regimes. As the band geometric characteristics, quantum geometric tensor and Berry curvature play critical roles in various Hall effects; so do their quantum fluctuations. It is found that the thermal Hall noise in linear order of the electric field is purely intrinsic, and the second-order thermal Hall noise has both intrinsic and extrinsic contributions. In particular, the intrinsic part of the second-order thermal Hall noise is a manifestation of the quantum fluctuation of the quantum geometric tensor, which widely exists as long as Berry curvature is nonzero. These intrinsic thermal Hall noises provide direct measurable means to band geometric information, including Berry curvature related quantities and quantum fluctuation of quantum geometric tensor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.