Abstract

The present density functional calculations propose the compounds CaSrX (X: Si, Ge, Sn, Pb) as strong topological insulators, with appreciable thermoelectric properties. Emergence of Dirac semi-metallic states has been observed in CaSrX (X: Si, Ge, Sn, Pb), which is induced by uni-axial strain along ‘b’ axis. CaSrSi and CaSrGe evolved as normal semiconductors with uni-axial strain. The trivial and non-trivial topological phases are evaluated by band inversion and Z2 topological invariants. A comprehensive analysis of thermopower, electrical conductivity scaled by relaxation time at these Dirac semi-metallic states exposes the highly oscillating behaviour, which gives insight to quantum oscillations driven by uni-axial strain. Further the thermoelectric properties at strong topological insulating states and normal insulating states have been summarized, which reveals the potential thermoelectric properties of these materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.