Abstract

We study the quantum Fisher information (QFI) per particle of an open (particles can enter and leave the system) and dissipative (far from thermodynamical equilibrium) steady state system of two qubits in a noise which is decoherence. We show the behavior of QFI per particle of the system due to changes of reset and decoherence parameters r and γ respectively. The parameter r is the strength of the reset mechanism, γ is the strength of decoherence and in our case it is dephasing channel. The parameters γ and r are real numbers. We observe that the reset parameter must be bigger than decoherence parameter. We have found that by choosing coupling parameter g as 5γ the QFI per particle is 1.00226 which is greater than shot noise limit at γ=0.5 and r=14. Also the concurrence and negativity of the such state have been calculated and they are found as 0.0992486 and 0.0496243 respectively. We have shown that when the concurrence and negativity of some specific states different than zero, which means the state is entangled, the QFI of the system is greater than 1. The QFI per particle, concurrence and negativity shows that the chosen case is weakly entangled. We discovered that the optimal direction depends on the parameters r and γ and a change in the direction affects the behavior of the QFI of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.