Abstract

Quantum information technology largely relies on a precious and fragile resource, call quantum entanglement, which exhibits a highly nontrivial manifestation of the coherent superposition of states of composite quantum systems. In this article, we discuss the correlation between the quantum entanglement measured by the von Neumann entropy and atomic quantum Fisher information by taking account the case of moving three-level atom. Our results show that there is a monotonic relation between the atomic quantum Fisher information and entanglement in the case of non-moving atom. On the other hand, we find that the atomic quantum Fisher information and entanglement exhibit an opposite changement behavior during the time evolution in the presence of atomic motion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.