Abstract

We study the dynamical evolution of quantum Fisher information (QFI) and von Neumann entropy (VNE) for a three-level atomic system interacting with the single-mode coherent field in the presence of the Stark effect and intrinsic decoherence (ID) with and without atomic motion. The effect of the ID is significant on the VNE and QFI for a three-level atom in the absence of atomic motion. It is observed that in the case of a three-level atomic system in the presence of ID, the decay of QFI and VNE is rapid and significant but no prominent effect of the Stark effect is observed. Hence, for a three-level atom, the decay of quantum entanglement (QE) with respect to time is very fast and rapid in the absence of atomic motion with an increasing value of ID. Moreover, ID is not suitable to maintain the QE for three-level atomic systems in the absence of atomic motion. The Stark effect has no significant effect on the QE. In the case of three-level atoms, ID and the Stark do not affect the periodic nature of QFI and VNE with time evolution in the presence of atomic motion. The periodic response of QFI and VNE is observed under the effect of the Stark effect and ID in the presence of a motion of a three-level atom. The QE sudden death and birth is observed in the presence of atomic motion. Therefore, the ID with the Stark effect is suitable to sustain and maintain the QE in the presence of atomic motion for three-level atomic systems. These results show the strong dependence of QFI and VNE on the Stark effect and ID.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call