Abstract

We study a driven, spin-orbit coupled fermionic system in a lattice at the resonant regime where the drive frequency equals the Hubbard repulsion, for which nontrivial constrained dynamics emerge at fast timescales. An effective density-dependent tunneling model is derived, and it is examined in the sparse filling regime in one dimension. The system exhibits entropic self-localization, where while even numbers of atoms propagate ballistically, odd numbers form localized bound states induced by an effective attraction from a higher configurational entropy. These phenomena occur in the strong coupling limit where interactions impose only a constraint with no explicit Hamiltonian term. We show how the constrained dynamics lead to quantum few-body scars and map to an Anderson impurity model with an additional intriguing feature of nonreciprocal scattering. Connections to many-body scars and localization are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.