Abstract

The problem of quantum state inference and the concept of quantum entanglement are studied using a non-additive measure in the form of Tsallis entropy indexed by the positive parameter q. The maximum entropy principle associated with this entropy along with its thermodynamic interpretation are discussed in detail for the Einstein-Podolosky-Rosen pair of two spin-1/2 particles. Given the data on the Bell-Clauser-Horne-Shimony-Holt observable, the analytic expression is given for the inferred quantum entangled state. It is shown that for q greater than unity, indicating the sub-additive feature of the Tsalls entropy, the entangled region is small and enlarges as one goes into super-additive regime where q is less than unity. It is also shown that quantum entanglement can be quantified by the generalized Kullback-Leibler entropy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.