Abstract
This is the second of a series of three papers examining how viable it is for entanglement to be sustained at high temperatures for quantum systems in thermal equilibrium (Case A), in nonequilibrium (Case B) and in nonequilibrium steady state conditions (Case C). The system we analyze here consists of two coupled quantum harmonic oscillators each interacting with its own bath described by a scalar field, set at temperatures $T_1 > T_2$. For \textit{constant bilinear inter-oscillator coupling} studied here (Case C1) owing to the Gaussian nature, the problem can be solved exactly at arbitrary temperatures even for strong coupling. We find that the valid entanglement criterion in general is not a function of the bath temperature difference, in contrast to thermal transport in the same NESS setting [1]. Thus lowering the temperature of one of the thermal baths does not necessarily help to safeguard the entanglement between the oscillators. Indeed, quantum entanglement will disappear if any one of the thermal baths has a temperature higher than the critical temperature $T_c$. With the Langevin equations derived we give a full display of how entanglement dynamics in this system depends on $T_{1}$, $T_{2}$ , the inter-oscillator coupling and the system-bath coupling strengths. For weak oscillator-bath coupling the critical temperature $T_c$ is about the order of the inverse oscillator frequency, but for strong oscillator-bath coupling it will depend on the bath cutoff frequency. We conclude that in most realistic circumstances, for bosonic systems in NESS with constant bilinear coupling, `hot entanglement' is largely a fiction. In Paper III we will examine the case (C2) of \textit{time-dependent driven coupling } which contains the parametric pumping type described in [2] wherein entanglement was first shown to sustain at high temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.