Abstract

We address the question of how a quantum computer can be used to simulate experiments on quantum systems in thermal equilibrium. We present two approaches for the preparation of the equilibrium state on a quantum computer. For both approaches, we show that the output state of the algorithm, after long enough time, is the desired equilibrium. We present a numerical analysis of one of these approaches for small systems. We show how equilibrium (time)-correlation functions can be efficiently estimated on a quantum computer, given a preparation of the equilibrium state. The quantum algorithms that we present are hard to simulate on a classical computer. This indicates that they could provide an exponential speedup over what can be achieved with a classical device.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.