Abstract

We replace a Hamiltonian with a modular Hamiltonian in the spectral form factor and the level spacing distribution function. This study establishes a connection between quantities within Quantum Entanglement and Quantum Chaos. To have a universal study for Quantum Entanglement, we consider the Gaussian random 2-qubit model. The maximum violation of Bell’s inequality demonstrates a positive correlation with the entanglement entropy. Thus, the violation plays an equivalent role as Quantum Entanglement. We first provide an analytical estimation of the relation between quantum entanglement quantities and the dip when a subregion only has one qubit. The time of the first dip is monotone for entanglement entropy. The dynamics in a subregion is independent of the initial state at a late time. It is one of the signaling conditions for classical chaos. We also extend our analysis to the Gaussian random 3-qubit state, and it indicates a similar result. The simulation shows that the level spacing distribution function approaches GUE at a late time. In the end, we develop a technique within QFT to the spectral form factor for its relation to an n-sheet manifold. We apply the technology to a single interval in CFT2 and the spherical entangling surface in \(\mathcal {N}=4\) super Yang-Mills theory. The result is one for both cases, but the Rényi entropy can depend on the Rényi index. For the case of CFT2, it indicates the difference between the continuum and discrete spectrum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.