Abstract

A transmission-mode AlxGa1−xAs/GaAs photocathode with the combination of composition-graded AlxGa1−xAs window layer and exponential-doping GaAs emission layer is developed to maximize the cathode performance. The theoretical quantum efficiency model with this complex structure containing twofold built-in electric fields is deduced by solving the one dimensional continuity equations combined with the three-step model. By comparison of spectral characteristics of photocathodes with different composition and doping structures, and through analysis of cathode structure parameters, it is found that the twofold built-in electric fields can effectively improve photoemission performance of AlxGa1−xAs/GaAs photocathode, which is related to Al proportion variation range and thicknesses of window layer and emission layer. The quantum efficiency model would provide theoretical guidance for better design of transmission-mode graded bandgap photocathodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.