Abstract

Photoexcited charge transfer from semiconductor nanocrystals to charge acceptors is a key step for photon energy conversion in semiconductor nanocrystal-based light-harvesting systems. Charge transfer competes against relaxation processes within the nanocrystals, and this competition determines the quantum efficiency of charge transfer. The quantum efficiency is a critical design element in photochemistry, but in nanocrystal–acceptor systems its extraction from experimental data is complicated by sample heterogeneity and intrinsically nonexponential excited-state decay pathways. In this manuscript, we systematically explore these complexities using TA spectroscopy over a broad range of timescales to probe electron transfer from CdS nanorods to the redox enzyme hydrogenase. To analyze the experimental data, we build a model that quantifies the quantum efficiency of charge transfer in the presence of competing, potentially nonexponential, relaxation processes. Our approach can be applied to calculate the ef...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call