Abstract

Electron transport through nanodevices of atoms in a single-layer rectangular arrangement with free (open) boundary conditions parallel to the direction of the current flow is studied within the single-band tight binding model. The Landauer formula gives the electrical conductance to be a function of the electron transmission probability, , as a function of the energy E of the incoming electron. A quantum dragon nanodevice is one which has a perfectly conducting channel, namely for all energies which are transmitted by the external leads even though there may be arbitrarily strong electron scattering. The rectangular single-layer systems are shown to be able to be quantum dragon devices, both for uniform leads and for dimerized leads. The quantum dragon condition requires appropriate lead-device connections and correlated randomness in the device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.