Abstract

Hot-start (HS) effects were investigated in pfu-based polymerase chain reaction (PCR), when water-soluble CdTe quantum dots (QDs) were introduced in the PCR system. The HS effects were demonstrated by the higher amplicon yields and excellent suppression of non-specific amplification after pre-incubation of PCR mix with QDs between 35°C and 56°C. DNA targets were well amplified even after PCR mixture was pre-incubated 1 h at 50°C. Importantly, the effects of QDs nanoparticles could be reversed by increasing the pfu polymerase concentration, suggesting that there was an interaction between QDs and pfu DNA polymerase. Moreover, control experiment indicated that HS effect is not primarily due to the reduced pfu polymerase concentration resulted from the above interaction. Fluorescence correlation spectroscopy (FCS), a single molecule detection method, was used to investigate the possible mechanism of HS PCR with QDs. Preliminary FCS results suggested that CdTe QDs may directly interact with pfu DNA polymerase, rather than other components in the PCR system. Furthermore, results demonstrated that the interaction between QDs and pfu resulted in a reduction in pfu polymerase concentration. This study provided a good start to investigate potential implications of QDs in other key molecular biology techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.