Abstract

Water-soluble cadmium telluride (CdTe) quantum dots (QDs) used as an anode interlayer in solution-processed near infrared (NIR) polymer photodetectors (PDs) were demonstrated. Polymer PDs incorporated with CdTe QDs as an anode interlayer exhibited 10-fold suppressed dark current density and analogous photocurrent density relative to poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), which resulted in enhanced detectivities over 10(11) Jones in the spectral range from 350 nm to 900 nm. Moreover, with the substitution of PEDOT:PSS by CdTe QDs, the stability of unencapsulated NIR polymer PDs was extended up to 650 hours, which is more than 3 times longer than those with PEDOT:PSS as an anode interlayer. These results indicated that CdTe QDs can be utilized as a solution-processable alternative to PEDOT:PSS as an anode interlayer for high performance NIR polymer PDs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.