Abstract

The efficient generation of polarized single or entangled photons is a crucial requirement for the implementation of quantum key distribution (QKD) systems. Self-organized semiconductor quantum dots (QDs) are capable of emitting one polarized photon or an entangled photon pair at a time using appropriate electrical current injection. We realized a highly efficient single-photon source (SPS) based on well-established semiconductor technology: In a pin structure, a single electron and a single hole are funneled into a single InAs QD using a submicron AlOx current aperture. Efficient radiative recombination leads to emission of single polarized photons with an all-time record purity of the spectrum. Non-classicality of the emitted light without using additional spectral filtering is demonstrated. The out-coupling efficiency and the emission rate are increased by embedding the SPS into a micro-cavity. The design of the micro-cavity is based on detailed modeling to optimize its performance. The resulting resonant single-QD diode is driven at a repetition rate of 1 GHz, exhibiting a second-order correlation function of g(2)(0) = 0. Eventually, QDs grown on (111)-oriented substrates are proposed as a source of entangled photon pairs. Intrinsic symmetry-lowering effects leading to the splitting of the exciton bright states are shown to be absent for this substrate orientation. As a result, the XX rarr X rarr 0 recombination cascade of a QD can be used for the generation of entangled photons without further tuning of the fine-structure splitting via QD size and/or shape.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.