Abstract

A green and simple method was found to prepare CdS/CdSe co-sensitized photoelectrodes for the quantum dots sensitized solar cells application. All the assembly processes of CdS and CdSe quantum dots (QDs) were carried out in aqueous solution. CdS and CdSe QDs were sequentially assembled onto TiO2-nano-SiO2 hybrid film by two steps. Firstly, CdS QDs were deposited in situ over TiO2-nano-SiO2 hybrid film by the successive ionic layer adsorption and reaction (SILAR) process in water. Secondly, using 3-mercaptopropionic acid (3-MPA) as a linker molecule, the pre-prepared colloidal CdSe QDs (~3.0 nm) dissolved in water was linked onto the TiO2-nano-SiO2 hybrid film by the self-assembled monolayer technique with the mode of dropwise. The mode is simple and advantageous to saving materials and time. The results show that the photovoltaic performance of the cells is enhanced with the increase of SILAR cycles for TiO2-nano-SiO2/CdS photoelectrode. The power conversion efficiency of 2.15 % was achieved using the co-sensitization photoelectrode prepared by using 6 SILAR cycles of CdS plus CdSe (TiO2-nano-SiO2/CdS(6)/CdSe) under the illumination of one sun (AM1.5, 100 mW/cm2).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call