Abstract
Cancer is one of the main causes of death in the world, and according to the WHO it is projected to continue rising. Current diagnostic modalities for the detection of cancer include the use of x-rays, magnetic resonance imaging and positron emission tomography, among others. The treatment of cancer often involves the use (or combination) of chemotherapeutic drugs, radiotherapy and interventional surgery (for solid and operable tumors). The application of nanotechnology in biology and medicine is advancing rapidly. Recent evidence suggests that quantum dots (QDs) can be used to image cancer cells as they display superior fluorescent properties compared with conventional chromophores and contrast agents. In addition, carbon nanotubes (CNTs) have emerged as viable candidates for novel chemotherapeutic drug delivery-platforms. The unique photothermal properties of CNTs also allow them to be used in conjunction with near infrared radiation and lasers to thermally ablate cancer cells. Furthermore, mounting evidence indicates that it is possible to conjugate QDs to CNTs, making it possible to exploit their novel attributes in the realm of cancer theranostics (diagnostics and therapy). Here we review the current literature pertaining to the applications of QDs and CNTs in oncology, and also discuss the relevance and implications of nanomedicine in a clinical setting.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have