Abstract
We consider random Schrödinger equations on Rd for d ≽ 3 with a homogeneous Anderson–Poisson type random potential. Denote by λ the coupling constant and $\psi_t$ the solution with initial data $\psi_0$. The space and time variables scale as $ x\sim\lambda ^{{ - 2 - \varkappa/2}} {\text{ and }}t\sim\lambda ^{{ - 2 - \varkappa}} {\text{ with }}0 < \varkappa < \varkappa_{0} {\left( d \right)} $. We prove that, in the limit λ → 0, the expectation of the Wigner distribution of $\psi_t$ converges weakly to the solution of a heat equation in the space variable x for arbitrary L2 initial data. The proof is based on analyzing the phase cancellations of multiple scatterings on the random potential by expanding the propagator into a sum of Feynman graphs. In this paper we consider the non-recollision graphs and prove that the amplitude of the non-ladder diagrams is smaller than their “naive size” by an extra λc factor per non-(anti)ladder vertex for some c > 0. This is the first rigorous result showing that the improvement over the naive estimates on the Feynman graphs grows as a power of the small parameter with the exponent depending linearly on the number of vertices. This estimate allows us to prove the convergence of the perturbation series.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.