Abstract
We consider random Schrodinger equations on \({\mathbb{R}^{d}}\) for d≥ 3 with a homogeneous Anderson-Poisson type random potential. Denote by λ the coupling constant and ψt the solution with initial data ψ0. The space and time variables scale as \({x\sim \lambda^{-2 -\kappa/2}, t \sim \lambda^{-2 -\kappa}}\) with 0 < κ < κ0(d). We prove that, in the limit λ → 0, the expectation of the Wigner distribution of ψt converges weakly to the solution of a heat equation in the space variable x for arbitrary L2 initial data. The proof is based on a rigorous analysis of Feynman diagrams. In the companion paper [10] the analysis of the non-repetition diagrams was presented. In this paper we complete the proof by estimating the recollision diagrams and showing that the main terms, i.e. the ladder diagrams with renormalized propagator, converge to the heat equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.