Abstract

We display a logarithmic divergence in the density matrix of a scalar field in the presence of an Einstein–Yang–Mills black hole in four dimensions. This divergence is related to a previously-found logarithmic divergence in the entropy of the scalar field, which cannot be absorbed into a renormalization of the Hawking–Bekenstein entropy of the black hole. Motivated by the fact that the cutoff in this divergence varies as the latter decays, by an analysis of black holes in two-dimensional string models and by studies of D-brane dynamics in higher dimensions, we propose that the renormalization scale variable be identified with time. In this case, the logarithmic divergence we find induces a non-commutator term [Formula: see text] in the quantum Liouville equation for the time evolution of the density matrix ρ of the scalar field, leading to quantum decoherence. The order of magnitude of [Formula: see text] is μ2/M P , where μ is the mass of the scalar particle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.