Abstract
We generalize the four-dimensional R^2-corrected z=3/2 Lifshitz black hole to a two-parameter family of black hole solutions for any dynamical exponent z and for any dimension D. For a particular relation between the parameters, we find the first example of an extremal Lifshitz black hole. An asymptotically Lifshitz black hole with a logarithmic decay is also exhibited for a specific critical exponent depending on the dimension. We extend this analysis to the more general quadratic curvature corrections for which we present three new families of higher-dimensional D>=5 analytic Lifshitz black holes for generic z. One of these higher-dimensional families contains as critical limits the z=3 three-dimensional Lifshitz black hole and a new z=6 four-dimensional black hole. The variety of analytic solutions presented here encourages to explore these gravity models within the context of non-relativistic holographic correspondence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.