Abstract

Energy transfer induced multifold enhanced emission from Yb3+ is realized in a new series of Cr3+-Yb3+ co-doped as well as Cr3+-Yb3+-Nd3+ triply doped zinc fluoroboro silicate glass system. The observed multifold enhancement of Yb3+ emission under Cr3+ excitation is attributed to probable occurrence of the quantum cutting process that is credited to the present host matrix where emission of Cr3+ is red shifted to 920 nm, which is resonant with Yb3+ absorption. The sensitized luminescence of Yb3+ in the Cr3+-Yb3+ system has further been enhanced upon inclusion of Nd3+, thus demonstrating bridging action of Nd3+ ions in this energy transfer process. The energy transfer efficiency from Cr → Yb is enhanced from 38% to 54% in the presence of Nd3+ ions. The absolute quantum yield of Yb3+ ions under Cr3+ excitation for the optimized Cr-Yb sample is found to be more than double of the Cr3+ singly doped sample and increased further in Cr-Yb-Nd doped glass confirming the contribution of quantum cutting in the energy transfer mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.