Abstract

Abstract Energy transfer (ET) and cross-relaxation (CR) processes play significant roles in regulating emitting colors and intensity of upconversion (UC) materials. Calculating the coefficients in ET and CR processes can provide visual descriptions for evaluating the UC luminescence properties. Here, we find that those ET and CR processes are responsible for the color-tunable properties in Gd2Ce2O7: Yb3+, Er3+ phosphors. By solving the rate equation, mathematical expressions are established to calculate the ET and CR coefficients based on the experimental UC spectra and lifetimes. The results are benefit to evaluate the efficiencies of ET and CR processes in quantization in different Yb3+ ion concentrations doped samples. The coefficients of ET process arise from 1.05 to 7.93 × 1017 cm3s−1 while those of CR process increase from 2.69 to 72.01 × 1017 cm3s−1 with increasing the Yb3+ ion concentration, which suggest that the CR and ET processes are efficient in Gd2Ce2O7 host. Furthermore, potential temperature sensing properties are also evaluated according to the fluorescence intensity ratio of 2H11/2 and 4S3/2 levels and the maximal sensitivity (S) is achieved about 0.00337 K−1 at 503 K. This work provides an insight into the evaluation of those UC processes and reveals the capacity in color-tunable and temperature sensing aspects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.