Abstract

The twin issues of the nature of the normal state and competing order(s) in the iron arsenides are central to understanding their unconventional, high-Tc superconductivity. We use a combination of transport anisotropy measurements on detwinned Sr(Fe(1-x)Co(x))2As2 single crystals and local density approximation plus dynamical mean field theory (LDA + DMFT) calculations to revisit these issues. The peculiar resistivity anisotropy and its evolution with x are naturally interpreted in terms of an underlying orbital-selective Mott transition (OSMT) that gaps out the dxz or dyz states. Further, we use a Landau-Ginzburg approach using LDA + DMFT input to rationalize a wide range of anomalies seen up to optimal doping, providing strong evidence for secondary electronic nematic order. These findings suggest that strong dynamical fluctuations linked to a marginal quantum-critical point associated with this OSMT and a secondary electronic nematic order constitute an intrinsically electronic pairing mechanism for superconductivity in Fe arsenides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.