Abstract
We study quantum phase transitions in transverse-field Ising spin chains in which the couplings are random but hyperuniform, in the sense that their large-scale fluctuations are suppressed. We construct a one-parameter family of disorder models in which long-wavelength fluctuations are increasingly suppressed as a parameter $\alpha$ is tuned. For $\alpha = 0$, one recovers the familiar infinite-randomness critical point. For $0 < \alpha < 1$, we find a line of infinite-randomness critical points with continuously varying critical exponents; however, the Griffiths phases that flank the critical point at $\alpha = 0$ are absent at any $\alpha > 0$. When $\alpha > 1$, randomness is a dangerously irrelevant perturbation at the clean Ising critical point, leading to a state we call the critical Ising insulator. In this state, thermodynamics and equilibrium correlation functions behave as in the clean system. However, all finite-energy excitations are localized, thermal transport vanishes, and autocorrelation functions remain finite in the long-time limit. We characterize this line of hyperuniform critical points using a combination of perturbation theory, renormalization-group methods, and exact diagonalization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.