Abstract
Quantum criticality describes the collective fluctuations of matter undergoing a second-order phase transition at zero temperature. Heavy-fermion metals have in recent years emerged as prototypical systems to study quantum critical points. There have been considerable efforts, both experimental and theoretical, that use these magnetic systems to address problems that are central to the broad understanding of strongly correlated quantum matter. Here, we summarize some of the basic issues, including the extent to which the quantum criticality in heavy-fermion metals goes beyond the standard theory of order-parameter fluctuations, the nature of the Kondo effect in the quantum-critical regime, the non-Fermi-liquid phenomena that accompany quantum criticality and the interplay between quantum criticality and unconventional superconductivity. At a zero-temperature phase transition from one ordered state to another, fluctuations between the two states lead to quantum critical behaviour that can lead to unexpected physics. Metals with ‘heavy’ electrons often harbour such weird states.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have