Abstract

We perform a systematic study of incoherent transport in the high temperature crossover region of the half filled one-band Hubbard model. We demonstrate that the family of resistivity curves displays characteristic quantum critical scaling of the form ρ(T, δU) = ρ(c)(T)f(T/T₀(δU)), with T₀(δU) ~ |δU|(zν), and ρ(c)(T) ~ T. The corresponding β function displays a "strong coupling" form β ~ ln(ρ(c)/ρ), reflecting the peculiar mirror symmetry of the scaling curves. This behavior, which is surprisingly similar to some experimental findings, indicates that Mott quantum criticality may be acting as the fundamental mechanism behind the unusual transport phenomena in many systems near the metal-insulator transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.